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Abstract
We give conditions under which general bipartite entangled non-orthogonal
states become maximally entangled states. Using these conditions we construct
a large class of entangled non-orthogonal states with exactly one ebit of
entanglement in both bipartite and multipartite systems. One remarkable
property is that the amount of entanglement in this class of states is independent
on the parameters involved in the states. Finally we discuss how to generate
the bipartite entangled non-orthogonal states.

PACS numbers: 03.65.Ud, 03.67.Hk, 03.67.Lx

1. Introduction

Quantum entanglement has generated much interest in quantum information processing
such as quantum teleportation [1], superdense coding [2], quantum key distribution [3] and
telecoloning [4]. The entangled orthogonal states receive much attention in the study of
quantum entanglement. However, the entangled non-orthogonal states also play an important
role in quantum cryptography [5] and quantum information processing [6]. Bosonic entangled
coherent states (ECS) [7] and su(2) and su(1, 1) ECS [8] are typical examples of entangled
non-orthogonal states.

The coherent state can be used to encode quantum information on continuous variables [9]
and several schemes [10–12] have been proposed for realizing quantum computation. The
overlap 〈α|−α〉 of two coherent states |±α〉 of π difference is exp (−2|α|2), which decreases
exponentially with α. Then we can identify the coherent states |±α〉 with large α as basis
states of a logical qubit:

|0〉L = |α〉 |1〉L = | − α〉. (1)

One can also use Schrödinger cat states [13], the even and odd coherent states |α〉± =
(|α〉 ± |−α〉)/

√
2(1 ± e−2|α|2) to encode a qubit [14, 15] and they are exactly orthogonal.

However these states are extremely sensitive to photon loss.
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Now we consider the bosonic ECS [7]

|α; α〉 = 1√
2(1 − e−4|α|2)

(|α〉 ⊗ |α〉 − |−α〉 ⊗ |−α〉) (2)

which can be produced by using a 50/50 beam splitter. If |α| is large, the ECS is considered
as a state of two logical qubits (1):

|α; α〉 = 1√
2

(|0〉L ⊗ |0〉L − |1〉L ⊗ |1〉L) (3)

which is obviously a maximally entangled state (MES), the singlet state.
More surprisingly it is found that the ECS |α; α〉 possesses exactly one ebit entanglement

[16] and the amount of entanglement is independent of α. Doubtlessly the ECS is an MES as
it can be rewritten as

|α; α〉 = 1√
2

(|α〉+ ⊗ |α〉− + |α〉− ⊗ |α〉+) (4)

in terms of the even and odd coherent states |α〉±. Equation (4) shows that the state |α; α〉
manifestly has one ebit of entanglement.

In this paper we give conditions under which general bipartite entangled non-orthogonal
states become MES. Using the conditions we construct a large class of bipartite maximally
entangled non-orthogonalstates in both the bipartite and multipartite systems. We also propose
some methods to generate the bipartite maximally entangled non-orthogornal states.

2. MES condition for bipartite entangled states

We begin with a standard general bipartite entangled state [17, 18]

|�〉 = µ|ᾱ〉 ⊗ |β̄〉 + ν|γ̄ 〉 ⊗ |δ̄〉 (5)

where |ᾱ〉 and |γ̄ 〉 are normalized states of system 1 and similarly |β̄〉 and |δ̄〉 are states of
system 2 with complex µ and ν. We consider the non-orthogonal case, i.e., the overlaps 〈ᾱ|γ 〉
and 〈β̄|δ̄〉 are non-zero. After normalization, the bipartite state |�〉 is given by

|�〉 = a|ᾱ〉 ⊗ |β̄〉 + d|γ̄ 〉 ⊗ |δ̄〉 (6)

where a = µ/N12, d = ν/N12, and

N12 =
√

|µ|2 + |ν|2 + µν∗〈γ̄ |ᾱ〉〈δ̄|β̄〉 + µ∗ν〈ᾱ|γ̄ 〉〈β̄ |δ̄〉. (7)

The two non-orthogonal states |ᾱ〉 and |γ̄ 〉 are assumed to be linearly independent and
span a two-dimensional subspace of the Hilbert space. Then we choose an orthogonal basis
{|0〉, |1〉} as

|0〉 = |ᾱ〉 |1〉 = (|γ̄ 〉 − p1|ᾱ〉)/N1 for system 1
|0〉 = |δ̄〉 |1〉 = (|β̄〉 − p2|δ̄〉)/N2 for system 2

(8)

where

p1 = 〈ᾱ|γ̄ 〉 N1 =
√

1 − |p1|2
p2 = 〈δ̄|β̄〉 N2 =

√
1 − |p2|2. (9)

Under this basis the entangled state |�〉 can be rewritten as

|�〉 = (ap2 + dp1)|0〉 ⊗ |0〉 + aN2|0〉 ⊗ |1〉 + dN1|1〉 ⊗ |0〉 (10)

which shows that the general entangled non-orthogonal state is considered as a state of two
logical qubits.
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Then it is straightforward to obtain the reduced density matrix ρ1(2)and the two eigenvalues
of ρ1 are given by [18]

λ± = 1
2 ± 1

2

√
1 − 4|adN1N2|2 (11)

which are identical to those of ρ2. The corresponding eigenvectors of ρ1(2) are denoted by
|±〉1(2). Then the general theory of the Schmidt decomposition [19] implies that the normalized
state |�〉 can be written as

|�〉 = c+|+〉1 ⊗ |+〉2 + c−|−〉1 ⊗ |−〉2 (12)

with |c±|2 = λ±.
From equations (11) and (12) we immediately know that the condition for the state |�〉 to

be an MES is |2adN1N2| = 1. Using equations (7) and (9), we rewrite the condition explicitly
as C = 1, where

C =
2|µ‖ν|

√(
1 − |p1|2

) (
1 − |p2|2

)
|µ|2 + |ν|2 + µν∗p∗

1p2 + µ∗νp1p∗
2

. (13)

Now we show that the quantity C is exactly one measure of entanglement, the concurrence
[20] for two qubits. There are different measures of entanglement. One simple measure
is the concurrence. Since the systems 1 and 2 in the bipartite state (5) are essentially
two-state systems, we can characterize the entanglement of the bipartite state by the
concurrence. The concurrence for a pure state |ψ〉 is defined by C = |〈ψ|σy ⊗ σy |ψ∗〉|.
Here σy = i(|1〉〈0| − |0〉〈1|). A direct calculation shows that the concurrence of the bipartite
state |�〉 is just the quantity C given by equation (13). Then the condition for the state |�〉 to
be an MES is that the concurrence of the state is equal to 1 as we hoped.

For an orthogonal state, p1 = p2 = 0, and the concurrence C = 2|µ‖ν|/(|µ|2 + |ν|2)

which obviously satisfies 0 � C � 1. The state |�〉 becomes an MES when |µ| = |ν| = 1 as
we expected. For a partly orthogonal state, p1 �= 0, p2 = 0, equation (13) becomes

C = 2|µ‖ν|
√

1 − |p1|2/(|µ|2 + |ν|2). (14)

Then the condition for the partly orthogonal state to be an MES is when the inner product
p1 = 0. For a completely non-orthogonal state, p1 �= 0 and p2 �= 0. It is remarkable to see that
we still have possibilities to make the concurrence C be 1. One case for C = 1 is given by

µ = −ν 〈ᾱ|γ̄ 〉 = 〈δ̄|β̄〉. (15)

The necessary and sufficient condition for the state |�〉 to be an MES is discussed in detail in
another paper [21]. We call equation (15) the MES condition for the general state |�〉. The
MES condition (15) immediately gives a interesting antisymmetric MES

|�a〉 = 1√
2(1 − |〈ᾱ|β̄〉|2)

(|ᾱ〉 ⊗ |β̄〉 − |β̄〉 ⊗ |ᾱ〉). (16)

The amount of entanglement of the state is exactly one ebit and the entanglement is independent
of the parameters involved. However, for a symmetric state

|�s〉 = 1√
2(1 + |〈ᾱ|β̄〉|2)

(|ᾱ〉 ⊗ |β̄〉 + |β̄〉 ⊗ |ᾱ〉) (17)

the corresponding concurrence is C = 1−|〈ᾱ|β̄〉|2
1+|〈ᾱ|β̄〉|2 , which indicates that the symmetric state is not

maximally entangled except for the orthogonal case 〈ᾱ|β̄〉 = 0. Note that states |ᾱ〉 and |β̄〉
are different normalized arbitrary states. From the above discussions we see that the relative
phase plays an important role in the entanglement.

Hirota et al [22] have found that the state |�a〉 is an MES. However, they impose a
restriction that the overlap 〈ᾱ|β̄〉 is a real number. As we discussed here, this restriction is not
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necessary and the states |ᾱ〉 and |β̄〉 can be arbitrary. As an illustration of the importance of
complex overlap, we consider a state

|α, α∗〉 = 1√
2(1 − |〈α|α∗〉|2)

(|α〉 ⊗ |α∗〉 − |α〉 ⊗ |α∗〉)

which is maximally entangled. The overlap 〈α|α∗〉 = e|α|2(e−i2θ −1) is real only when α = |α|eiθ

is real or purely imaginary. So the MES with real overlap is a small subset of the set formed
by the MES with complex overlap.

More maximally entangled ECS can be constructed. For instance, the bosonic coherent
state |α〉 can be replaced by the abstract su (2) coherent state and su (1, 1) coherent state in
the state |α; α〉, and then the corresponding su (2) and su (1, 1) ECS [8] with one ebit of
entanglement can be obtained.

3. More general entangled non-orthogonal states

Now we consider a more general entangled coherent state of the following type:

|�〉 = a|ᾱ〉 ⊗ |β̄〉 + b|ᾱ〉 ⊗ |δ̄〉 + c|γ̄ 〉 ⊗ |β̄〉 + d|γ̄ 〉 ⊗ |δ̄〉. (18)

We assume that the state |�〉 is a normalized state. When b = c = 0, the state |�〉 reduces
to the state |�〉. One typical useful example of this type of state is the state generated by the
interaction

H = χa
†
1a1a

†
2a2 (19)

where ai and a
†
i are the bosonic annihilation and creation operators of system i. After an

interaction time t = π/χ , from the initial product of coherent states |α〉⊗ |β〉, the output state
is [23]

|φ〉 = 1
2 [(|α〉 + |−α〉) ⊗ |β〉 + (|α〉 − |−α〉) ⊗ |−β〉]

= 1
2 (|α〉 ⊗ |β〉 + |α〉 ⊗ |−β〉 + |−α〉 ⊗ |β〉 − |−α〉 ⊗ |−β〉) (20)

This state was successfully used to construct entangled coherent-state qubits in an ion trap
[24].

Using the same technique as in the section above we can consider the state |�〉 as a
two-qubit state. We write the state in the form of qubits

|�〉 = (ap2 + b + cp1p2 + dp1)|0〉 ⊗ |0〉 + N2(a + cp1)|0〉 ⊗ |1〉
+ N1(d + cp2)|1〉 ⊗ |0〉 + cN1N2|1〉 ⊗ |1〉. (21)

in the basis defined in equation (8).
For a general pure state

|ψ〉 = a|0〉 ⊗ |0〉 + b|0〉 ⊗ |1〉 + c|1〉 ⊗ |0〉 + d|1〉 ⊗ |1〉 (22)

the concurrence is given by [20]

C = 2|ad − bc|. (23)

From equations (24) and (23), the concurrence of state |�〉 is obtained as

C = 2
√

1 − |p1|2
√

1 − |p2|2|ad − bc|. (24)

When b = c = 0 equation (24) reduces to equation (13) as we expected. From equation (24)
the corresponding concurrence of the state |φ〉 is simply obtained as

C =
√

(1 − e−4|α|2)(1 − e−4|β|2). (25)

We see that the state becomes a maximally entangled state if and only if the amplitudes |α| � 1
and |β| � 1.
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4. Bipartite entanglement in multipartite systems

It is more interesting to ask if we can obtain bipartite MES in multipartite systems. A bipartite
MES with even systems we can offer is

|ᾱ; β̄〉2N = |ᾱ〉 ⊗ · · · ⊗ |ᾱ〉 ⊗ |β̄〉 ⊗ · · · ⊗ |β̄〉 − |β̄〉 ⊗ · · · ⊗ |β̄〉 ⊗ |ᾱ〉 ⊗ · · · ⊗ |ᾱ〉 (26)

up to a normalization constant. To see the fact that this state is an MES we consider the first
N systems as system 1 and the other N systems as system 2. By this observation, these two
states satisfy the MES condition (15), i.e., they are the MES in the sense that the concurrence
C(12...N)(N+1,N+2...2N) between the first N systems and the second N systems is equal to 1. Of
course we can construct more complicated bipartite MES in the multipartite system according
to the MES condition.

Now we consider an ECS defined by
|α; −α〉N = |α〉 ⊗ · · · ⊗ |α〉 − |−α〉 ⊗ · · · ⊗ |−α〉. (27)

For even N, this state is a bipartite MES, however for odd N, usually it is not. The above state
can be considered as a multipartite maximally entangled state if the coherent states |±α〉 are
considered as logical qubits as in equation (1).

After normalization, the MES |α; −α〉N is expanded as

|α; −α〉N = 1√
2
(
1 − e−2N |α|2) (|α〉 ⊗ · · · ⊗ |α〉 − |−α〉 ⊗ · · · ⊗ |−α〉)

= 1√
sinh(N |α|2)

∞∑
n1···nN

αn1+···+nN [1 − (−1)n1+···+nN ]

2
√

n1! · · · nN !
|n1 · · · nN 〉 (28)

where |n1 · · · nN 〉 = |n1〉 ⊗ · · · ⊗ |nN 〉 and |nk〉 are Fock states of system k.
In the limit |α| → 0, we see that only the terms with n1 + · · · + nN = 1 survive, and the

resultant state is

|W〉N = 1√
N

(|100 · · ·0〉 + |0100 · · ·0〉 + · · · + |0000 · · ·1〉). (29)

It is interesting to see that the state is the so-called W state [25, 26]. The entanglement of the
W state is maximally robust under disposal of any one of the qubits.

The state |α; −α〉N with even N is a bipartite MES and then the W state with even N is
also a bipartite MES. For instance, |W 〉4 can be rewritten as

|W 〉4 = 1√
2

(|�+〉 ⊗ |00〉 + |00〉 ⊗ |�+〉) (30)

which manifestly has one ebit of entanglement. Here the state |�+〉 represents one of the Bell
states, i.e.

|�+〉 = 1√
2

(|01〉 + |10〉).
However the state |α; −α〉N with odd N is not a bipartite MES. For instance, from equation (23)
the concurrence between system 1 and systems 2 and 3 of the state |α; −α〉3 is obtained as

C1(23) =
√(

1 − e−4|α|2) (1 − e−8|α|2)(
1 − e−6|α|2) . (31)

In the limit |α| → ∞, the concurrence becomes 1 as we expected, and in the limit |α| → 0, the
concurrence C1(23) = 2

√
2

3 , which can be understood as follows. The state |α; −α〉3 becomes
the W state in the limit |α| → 0, and for the state |W〉N , an equality [27]

C2
12 + C2

13 + · · · + C2
1N = C2

1(23···n) (32)

holds. For |W〉3 the concurrence C12 = C13 = 2/3, therefore C1(23) = 2
√

2
3 .
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In a three-qubit system we can construct a bipartite MES as∣∣∣∣α; α√
2

〉
3

= |α〉 ⊗
∣∣∣∣ α√

2

〉
⊗
∣∣∣∣ α√

2

〉
− |−α〉 ⊗

∣∣∣∣− α√
2

〉
⊗
∣∣∣∣− α√

2

〉
(33)

In the limit |α| → 0, it reduces to the MES 1√
2
(|1〉 ⊗ |00〉 + |0〉 ⊗ |�+〉). Further, in odd

systems the bipartite MES is constructed as∣∣∣∣α; α√
2N

〉
2N+1 = |α〉 ⊗

∣∣∣∣ α√
2N

〉
⊗ · · · ⊗

∣∣∣∣ α√
2N

〉
− |−α〉 ⊗

∣∣∣∣ −α√
2N

〉
⊗ · · · ⊗

∣∣∣∣ −α√
2N

〉
(34)

with the concurrence C1(23...2N+1) = 1, which results from the identity

〈α| − α〉 = (〈α/
√

2N | − α/
√

2N〉)2N (35)

and the MES condition.

5. Generation of the entangled states

Now we consider how to generate the bipartite maximally entangled non-orthogonal states in
both bipartite and multipartite systems.

5.1. Bipartite entangled states

One method is already given by Barenco et al [28] and Buek and Hillery [29], and based on
controlled-SWAP gate which is described by the following transformation

|0〉|ᾱ〉|β̄〉 → |0〉|ᾱ〉|β̄〉 |1〉|ᾱ〉|β̄〉 → |1〉|β̄〉|ᾱ〉. (36)

Let the input state of the controlled-SWAP gate be 1√
2
(|0〉 + |1〉)|ᾱ〉|β̄〉 and we measure the

output state. If we measure the qubit on the state |−〉 = 1√
2
(|0〉 − |1〉), we obtain exactly the

antisymmetric maximally entangled state |�a〉 (23). The entanglement swapping method [30]
can be used to generate entangled coherent states in trapped-ion systems [31, 32], which is
also discussed in [33]. Here we generalize the method proposed by van Enk and Hirota [16],
who have studied how to generate |α; α〉 using a 50/50 beam splitter.

The 50/50 beam splitter is described by B1,2 = ei π
4 (a

†
1a2+a

†
2a1), which transforms the state

|α〉1 ⊗ |β〉2 as

B1,2|α〉1 ⊗ |β〉2 = |(α + iβ)/
√

2〉1 ⊗ |(β + iα)/
√

2〉2. (37)

Further using the phase shifter P2 = e−i π
2 a

†
2a2 which effects a phase shift of −π/2, we can

have the transformation B1,2 = P2B12P2, which transforms the coherent states as

B1,2|α〉1 ⊗ |β〉2 = |ε+〉1 ⊗ |ε−〉2 (38)

where ε± = (α ± β)/
√

2. Now let the input state be |α〉1− ⊗ |β〉2, i.e., the input state is
the direct product of the odd coherent state |α〉1− and the coherent state |β〉2. After the
transformation B1,2, we obtain the output state as

|ε+〉1 ⊗ |ε−〉2 − |−ε−〉1 ⊗ |−ε+〉2 (39)

up to a normalization constant. Applying another phase shifter e−iπa
†
2a2 to the above state, we

obtain the unnormalized state

|ε+〉1 ⊗ |−ε−〉2 − |−ε−〉1 ⊗ |ε+〉2 (40)
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which is exactly of the form of |�a〉 (16). So the two-parameter ECS is an MES independent
of the two parameters ε±.

From the above procedure we can see that the odd coherent state plays an important role.
If we replace the odd coherent state by the even coherent state and repeat the procedure, the
resultant state is not an MES. If we let the input state be the product state of two odd coherent
states, |α〉1− ⊗ |α〉2−, the resultant state is given by

|
√

2α〉1+ ⊗ |0〉2 − |0〉1 ⊗ |
√

2α〉2+ (41)

which is also an MES. If we replace the input state |α〉1− ⊗ |α〉2− by |α〉1+ ⊗ |α〉2+ or
|α〉1− ⊗ |α〉2+, the resultant states are not MES.

5.2. Multipartite entangled coherent states

We first introduce the Kerr transformation

K = exp
[− iπ(a

†
i ai)

2/2
]

(42)

where ai and a
†
i are the annihilation and creation operators of the field mode i, respectively. It

is well known that K can transfer a coherence state |α〉i into a superposition of two coherent
states [13] |±α〉i , i.e.,

Ki|α〉i = 2−1/2(|α〉i + i|−α〉i) (43)

up to a trivial global phase. This superposition state has proved to be very useful in constructing
optical analogues to Schrödinger’s cat state [13]. Now we try to generate the following
multipartite entangled coherent state with N modes

|α; −α〉′N = 2−1/2(|α〉1 ⊗ |α〉2 · · · |α〉N + i| − α〉1 ⊗ |−α〉2 · · · |−α〉N). (44)

This state is in fact a multipartite entangled state for continuous variables. van Loock and
Braunstein [34] have used an interesting unitary transformation U to create multipartite
entangled states of continous variables. And later the transformation was used to realize
an optical cloning machine for coherent states [35]. The transformation U is defined as a
quantum network of beam splitters as

UN = B′
N−1,N

(
sin−1 1√

2

)
B′

N−2,N−1

(
sin−1 1√

3

)
× · · · × B′

1,2

(
sin−1 1√

N

)
(45)

where B′
i−1,i (θ) = exp [θ(a

†
i−1ai − a

†
i ai−1)] is also a beam splitter transformation acting on

modes i − 1 and i. The action of the beam splitter on the two modes can be expressed as

B′
i−1,i (θ)

(
a
†
i−1

a
†
i

)
B′†

i−1,i (θ) =
(

cos θ − sin θ

sin θ cos θ

)(
a
†
i−1

a
†
i

)
(46)

Directly from equations (45) and (46), a useful relation is obtained as

UN

√
Na

†
1U†

N =
N∑

i=1

a
†
i . (47)

Equation (47) leads to

UND1(
√

Nα)U†
N =

N∏
i=1

Di(α) (48)

where Di(α) = exp (αa
†
i − α∗ai) is the displacement operator for mode i.
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Let the initial state of the N-mode systems be |√Nα〉1 ⊗ |0〉2 · · · |0〉N , and let the unitary
operator UNK1 act on it. Then we obtain

|α; −α〉′N = UNK1|
√

Nα〉1 ⊗ |0〉2 · · · |0〉N . (49)

That is to say, we can generate the multipartite ECS from a product N-mode state by successive
application of the unitary operators K1 and UN . The proposed scheme is simple and can in
principle be realized by the present technology.

We can also generate the multipartite W state [25, 26]. From equation (47) we obtain

|W〉 = UN |100 · · ·0〉. (50)

That is to say, the W state can be directly generated by applying the unitary operator UN to the
state |100 · · ·0〉.

Now let us see how to produce another kind of multipartite ECS. Let the initial state of N
bosonic systems be

|�0〉 = (|α〉1 − |−α〉1) ⊗ |0〉2 ⊗ |0〉3 ⊗ · · · ⊗ |0〉N. (51)

By applying the transformation BN−1,N · · ·B3,4B1,2 to the initial state, we obtain

BN−1,N · · ·B3,4B1,2|�0〉 =
∣∣∣ α

21/2

〉
1
⊗
∣∣∣ α

21

〉
2
⊗ · · · ⊗

∣∣∣ α

2i/2

〉
i
⊗ · · · ⊗

∣∣∣ α

2(N−2)/2

〉
N−2

⊗
∣∣∣ α

2(N−1)/2

〉
N−1

⊗
∣∣∣ α

2(N−1)/2

〉
N

−
∣∣∣∣−α

21/2

〉
1

⊗
∣∣∣∣−α

21

〉
2

⊗ · · · ⊗
∣∣∣∣−α

2i/2

〉
i

⊗ · · · ⊗
∣∣∣∣ −α

2(N−2)/2

〉
N−2

⊗
∣∣∣∣ −α

2(N−1)/2

〉
N−1

⊗
∣∣∣∣ −α

2(N−1)/2

〉
N

. (52)

It is easy to check that the C1(23..N) = 1 due to the identity〈
α

21/2

∣∣∣∣−α

21/2

〉
=
〈

α

2(N−1)/2

∣∣∣∣ −α

2(N−1)/2

〉 N−1∏
i=2

〈
α

2i/2

∣∣∣∣−α

2i/2

〉
. (53)

So this state is a bipartite MES. Note that here the integer N can be either even or odd.

6. Conclusion

In conclusion we have given conditions under which general bipartite entangled non-
orthogonal states become MES. According to the conditions a large class of bipartite
maximally entangled non-orthogonal states are constructed in both the bipartite and
multipartite systems. A remarkable property of these MES is that the amount of entanglement
is independent of the parameters involved in the states. We also propose some methods to
generate the MES. Specifically the multipartite entangled coherent states and the multipartite
W state are generated by quantum networks of beam splitters.

The applications of the bipartite MES discussed in this paper are already considered
in the context of quantum teleportation of coherent states [16] and entangled coherent
states [36]. The MES are expected to have more applications in quantum information
processing. Throughout the paper we only consider the bipartite entanglement. The more
difficult task is to quantify the genuine multipartite entanglement [25, 37] in the multipartite
non-orthogonal states, which are now under consideration.
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